Memory-efficient Transformer-based network model for TravelingSalesman Problem
Hua Yang, Minghao Zhao, Lei Yuan, Yang Yu, Zhenhua Li, and Ming Gu. "Memory-efficient Transformer-based network model for Traveling Salesman Problem.", Neural Networks 161 (2023): 589-597.
计算复杂度是二次的,
内存需求过高,导致内存不足。
强化学习中马尔可夫决策过程的变量为:状态,
Tspformer architecture
其中主要的注意力来自于点积值,可以对查询数据进行采样,从而使得矩阵乘法运算的数据减少。
采样
用矩阵乘法来求
再次计算
Encoder
Decoder
Model training with reinforcement learning
损失函数:
为了构造
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer
Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. "Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer.", Conference on Neural Information Processing Systems abs/2110.02544 (2021): 11096-11107.